login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281873 a(n+1) is the smallest number greater than a(n) such that Sum_{j=1..n+1} 1/a(j) <= 4, a(1) = 1. 1

%I

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

%T 27,28,29,30,200,77706,16532869712,3230579689970657935732,

%U 36802906522516375115639735990520502954652700

%N a(n+1) is the smallest number greater than a(n) such that Sum_{j=1..n+1} 1/a(j) <= 4, a(1) = 1.

%C The method for any number A is to find the largest harmonic number H(n) smaller than A, then use the greedy algorithm to expand the difference A - H(n).

%C A140335 is the same sequence for 3. The sequence for 5 consists of 99 terms, the largest of which has 142548 digits.

%D A. M. Gleason, R. E. Greenwood, and L. M. Kelly, The William Lowell Putnam Mathematical Competition, Problems and Solutions, 1938-1964, MAA, 1980, pages 398-399.

%H John Scholes, <a href="http://mks.mff.cuni.cz/kalva/putnam/psoln/psol5413.html">14th Putnam Mathematical Competition, 1954, Problem B6</a>, after Gleason, Greenwood & Kelly.

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%F Sum_{k=1..35} 1/a(k) = 4.

%t x0=4-Sum[1/k,{k,1,30}];

%t Nm=10;

%t j=0;

%t While[x0>0||j==Nm,a0=Ceiling[1/x0];

%t x0=x0-1/a0;

%t Print[a0];j++]

%t f[s_List, n_] := Block[{t = Total[1/s]}, Append[s, Max[ s[[-1]] +1, Ceiling[1/(n - t)]]]]; Nest[f[#, 4] &, {1}, 34] (* _Robert G. Wilson v_, Feb 05 2017 *)

%o (Python)

%o from sympy import egyptian_fraction

%o print(egyptian_fraction(4)) # _Pontus von Brömssen_, Feb 10 2019

%Y Cf. A140335, A306349.

%K nonn,fini,full

%O 1,2

%A _Yuriy Sibirmovsky_, Jan 31 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 12:43 EDT 2019. Contains 321430 sequences. (Running on oeis4.)