OFFSET
1,2
COMMENTS
LINKS
FORMULA
G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) / Product_{j>=1} (1 - x^(j^2)).
a(n) = Sum_{k=1..n} k * A243148(n,k). - Alois P. Heinz, Sep 19 2018
a(n) ~ exp(3 * 2^(-4/3) * zeta(3/2)^(2/3) * (Pi*n)^(1/3)) * sqrt(Pi/3) / (12*sqrt(n)). - Vaclav Kotesovec, Sep 15 2021
EXAMPLE
a(8) = 15 because we have [4, 4], [4, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1] and 2 + 5 + 8 = 15.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], (s->
`if`(s>n, 0, (p->p+[0, p[1]])(b(n-s, i))))(i^2)+b(n, i-1))
end:
a:= n-> b(n, isqrt(n))[2]:
seq(a(n), n=1..70); # Alois P. Heinz, Sep 19 2018
MATHEMATICA
nmax = 63; Rest[CoefficientList[Series[Sum[x^i^2/(1 - x^i^2), {i, 1, nmax}]/Product[1 - x^j^2, {j, 1, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2017
STATUS
approved