login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281488 a(n) = -Sum_{d divides (n-2), 1 <= d < n} a(d). 3
1, -1, -1, 0, 0, 0, -1, 1, 0, -1, 0, 1, -1, 0, 0, 1, 0, -2, -1, 3, 0, -2, 1, 2, -2, -3, 1, 4, -1, -3, 0, 5, -1, -7, 1, 7, -1, -5, 0, 6, 1, -9, -2, 11, 1, -9, -1, 8, 0, -12, 0, 15, 0, -11, -1, 13, 0, -17, 1, 18, -2, -17, 1, 17, 0, -24, 0, 28, -1, -21, 0, 22 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,18

COMMENTS

a(1) = 1, any other choice simply adds a factor to all terms.

The even bisection of the sequence seems to behave similarly to A281487 with similar asymptotics for |a(n)|. However, the odd bisection shows oscillations with increasing intervals between crossing the zero and increasing amplitude.

LINKS

Andrey Zabolotskiy, Table of n, a(n) for n = 1..20000

FORMULA

a(1) = 1,

a(n) = -Sum_{d|(n-2), 1 <= d < n} a(d) for n>1.

PROG

a = [1]

for n in range(2, 100):

   a.append(-sum(a[d-1] for d in range(1, n) if (n-2)%d == 0))

print(a)

CROSSREFS

Cf. A007439 (same formula with overall + instead of -), A281487 (same formula with (n-1) instead of (n-2)), A000123.

Sequence in context: A147654 A071467 A125073 * A071461 A091829 A194188

Adjacent sequences:  A281485 A281486 A281487 * A281489 A281490 A281491

KEYWORD

sign,easy,look,hear

AUTHOR

Andrey Zabolotskiy, Jan 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 14:31 EST 2018. Contains 299334 sequences. (Running on oeis4.)