login
A279194
Numbers of the form {(11*h+p)*11^2k-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^(2k+1)-1 | h,k in N and q in {2,6,7,8,10} }.
4
0, 2, 3, 4, 8, 11, 13, 14, 15, 19, 21, 22, 24, 25, 26, 30, 33, 35, 36, 37, 41, 44, 46, 47, 48, 52, 55, 57, 58, 59, 63, 65, 66, 68, 69, 70, 74, 76, 77, 79, 80, 81, 85, 87, 88, 90, 91, 92, 96, 99, 101, 102, 103, 107, 109, 110, 112, 113, 114, 118, 120, 121, 123, 124, 125, 129
OFFSET
1,2
COMMENTS
The sequence J related to the Apwenian power series F_{11}(x).
LINKS
Hao Fu, G.-N. Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370 [math.NT], 2016. See sequence "J" in Section 2.3.
MATHEMATICA
isok[n_]:=Module[{ord=IntegerExponent[n+1, 11], pq={{1, 3, 4, 5, 9}, {2, 6, 7, 8, 10}}}, MemberQ[pq[[Mod[ord, 2]+1]], Mod[(n+1)/11^ord, 11]]]; Select[Range[0, 131], isok] (* Ray Chandler, Dec 17 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 15 2016
EXTENSIONS
Definition (from p. 5, Definition 2.1 of the arXiv reference) provided by Arie Groeneveld, Dec 16 2016
More terms from Ray Chandler, Dec 17 2016
STATUS
approved