OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
Robert Price, Table of n, a(n) for n = 0..126
Robert Price, Diagrams of first 20 stages
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Wolfram Research, Wolfram Atlas of Simple Programs
FORMULA
Conjectures from Chai Wah Wu, May 04 2024: (Start)
a(n) = - a(n-1) + a(n-3) + a(n-4) + 256*a(n-8) + 256*a(n-9) - 256*a(n-11) - 256*a(n-12) for n > 15.
G.f.: (-28*x^15 - 8*x^14 + 448*x^13 + 128*x^12 + 28*x^9 + 72*x^8 + 64*x^7 + 80*x^6 + 16*x^5 + 20*x^4 + 4*x^3 + 5*x^2 + x + 1)/(256*x^12 + 256*x^11 - 256*x^9 - 256*x^8 - x^4 - x^3 + x + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 137; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 06 2016
STATUS
approved