%I #22 Mar 28 2018 03:57:54
%S 1,-2,-1,-2,7,2,10,-8,5,-40,-4,-54,52,-30,162,-12,292,-142,270,-576,
%T 168,-1228,305,-1702,1435,-1664,3839,-1444,7303,-2752,10117,-8420,
%U 11065,-20714,11066,-38702,17057,-57276,40310,-69898,94138,-77014,181926,-97480
%N Convolution square of A255528.
%H Seiichi Manyama, <a href="/A278710/b278710.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: Product_{k>0} 1/(1 + x^k)^(k*2).
%F a(n) ~ (-1)^n * exp(-1/6 + 3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3)) * A^2 * Zeta(3)^(1/9) / (2^(11/18) * sqrt(3*Pi) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Apr 13 2017
%F G.f.: exp(2*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - _Ilya Gutkovskiy_, Mar 27 2018
%Y Product_{k>0} 1/(1 + x^k)^(k*m): A026011 (m=-2), A255528 (m=1), this sequence (m=2), A279031 (m=3), A279411 (m=4).
%K sign
%O 0,2
%A _Seiichi Manyama_, Apr 11 2017