login
Number of set partitions of [3n] into n subsets of size three such that all element sums are squares.
5

%I #19 Apr 13 2019 01:36:59

%S 1,0,0,0,0,29,35,340,26579,390480,9514434,145963193,5474045270,

%T 87251356528

%N Number of set partitions of [3n] into n subsets of size three such that all element sums are squares.

%e a(5) = 29: {{1,3,5}, {2,9,14}, {4,6,15}, {7,8,10}, {11,12,13}},

%e {{1,3,5}, {2,11,12}, {4,6,15}, {7,8,10}, {9,13,14}},

%e {{1,2,6}, {3,7,15}, {4,8,13}, {5,9,11}, {10,12,14}},

%e {{1,2,6}, {3,7,15}, {4,10,11}, {5,8,12}, {9,13,14}},

%e {{1,3,5}, {2,8,15}, {4,7,14}, {6,9,10}, {11,12,13}},

%e {{1,3,5}, {2,8,15}, {4,10,11}, {6,7,12}, {9,13,14}},

%e {{1,9,15}, {2,3,4}, {5,6,14}, {7,8,10}, {11,12,13}},

%e {{1,9,15}, {2,3,4}, {5,7,13}, {6,8,11}, {10,12,14}},

%e {{1,2,6}, {3,9,13}, {4,7,14}, {5,8,12}, {10,11,15}},

%e {{1,2,6}, {3,8,14}, {4,9,12}, {5,7,13}, {10,11,15}},

%e {{1,3,5}, {2,9,14}, {4,8,13}, {6,7,12}, {10,11,15}},

%e {{1,3,12}, {2,6,8}, {4,5,7}, {9,13,14}, {10,11,15}},

%e {{1,11,13}, {2,3,4}, {5,6,14}, {7,8,10}, {9,12,15}},

%e {{1,3,5}, {2,10,13}, {4,7,14}, {6,8,11}, {9,12,15}},

%e {{1,2,6}, {3,8,14}, {4,10,11}, {5,7,13}, {9,12,15}},

%e {{1,10,14}, {2,3,4}, {5,7,13}, {6,8,11}, {9,12,15}},

%e {{1,2,6}, {3,10,12}, {4,7,14}, {5,9,11}, {8,13,15}},

%e {{1,3,5}, {2,11,12}, {4,7,14}, {6,9,10}, {8,13,15}},

%e {{1,3,5}, {2,9,14}, {4,10,11}, {6,7,12}, {8,13,15}},

%e {{1,10,14}, {2,3,4}, {5,9,11}, {6,7,12}, {8,13,15}},

%e {{1,6,9}, {2,3,11}, {4,5,7}, {8,13,15}, {10,12,14}},

%e {{1,4,11}, {2,5,9}, {3,6,7}, {8,13,15}, {10,12,14}},

%e {{1,2,6}, {3,10,12}, {4,8,13}, {5,9,11}, {7,14,15}},

%e {{1,3,5}, {2,11,12}, {4,8,13}, {6,9,10}, {7,14,15}},

%e {{1,2,6}, {3,9,13}, {4,10,11}, {5,8,12}, {7,14,15}},

%e {{1,3,5}, {2,10,13}, {4,9,12}, {6,8,11}, {7,14,15}},

%e {{1,11,13}, {2,3,4}, {5,8,12}, {6,9,10}, {7,14,15}},

%e {{1,6,9}, {2,4,10}, {3,5,8}, {7,14,15}, {11,12,13}},

%e {{1,5,10}, {2,6,8}, {3,4,9}, {7,14,15}, {11,12,13}}.

%t A278329[0] = 1;

%t A278329[n_] := Length@FindClique[Graph[First@# <-> Last@# & /@ Select[Subsets[Select[Flatten[IntegerPartitions[#^2, {3}, Range[3 n]] & /@ Range[Sqrt[9 n - 3]], 1], DuplicateFreeQ], {2}], DuplicateFreeQ@Flatten@# &]], {n}, All] (* _Davin Park_, Jan 26 2017 *)

%Y Cf. A000290, A252897, A278339, A281706, A295946.

%K nonn,more

%O 0,6

%A _Alois P. Heinz_, Nov 18 2016

%E a(12)-a(13) from _Bert Dobbelaere_, Apr 12 2019