login
A278179
a(n) is the denominator of intersection number <tau_2^(3n-3)>, n>=2.
2
240, 144, 48, 8, 96, 1, 32, 1, 32, 1, 8, 1, 16, 1, 64, 1, 32, 1, 32, 1, 64, 1, 16, 1, 16, 1, 8, 1, 16, 1, 128, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 4, 1, 8, 1, 32, 1, 16, 1, 16, 1, 32, 1, 16, 1, 16, 1, 8, 1, 16, 1, 256, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 16, 1, 32, 1, 128, 1, 64, 1, 64, 1, 128
OFFSET
2,1
COMMENTS
For 'intersection numbers' see Section 1 in Itzykson and Zuber paper.
LINKS
Stavros Garoufalidis, Marcos Marino, Universality and asymptotics of graph counting problems in nonorientable surfaces, arXiv:0812.1195 [math.CO], 2008.
C. Itzykson, J.-B. Zuber, Combinatorics of the Modular Group II: the Kontsevich integrals, arXiv:hep-th/9201001, 1991.
FORMULA
a(n) = denominator((3*n-3)!*4^n/((5*n-5)*(5*n-3)) * A269418(n)/A269419(n)) for n >= 2.
EXAMPLE
7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
PROG
(PARI)
A269418_seq(N) = {
my(y = vector(N)); y[1] = 1/48;
for (n = 2, N,
y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
concat(-1, y);
};
seq(N) = {
my(y = A269418_seq(N+2));
vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
};
apply(denominator, seq(85))
CROSSREFS
Cf. A269418, A269419, A278178 (numerator).
Sequence in context: A298621 A299587 A078151 * A100748 A072235 A298453
KEYWORD
nonn,frac
AUTHOR
Gheorghe Coserea, Nov 13 2016
STATUS
approved