This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277873 Number of ways of writing n as a sum of powers of 5, each power being used at most five times. 5
 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Also known as the hyper 5-ary partition sequence, often denoted h_5(n). Contains A002487 as a subsequence. LINKS Timothy B. Flowers, Table of n, a(n) for n = 0..10000 K. Courtright and J. Sellers, Arithmetic properties for hyper m-ary partition functions, Integers, 4 (2004), A6. Timothy B. Flowers, Extending a Recent Result on Hyper m-ary Partition Sequences, Journal of Integer Sequences, Vol. 20 (2017), #17.6.7. T. B. Flowers and S. R. Lockard, Identifying an m-ary partition identity through an m-ary tree, Integers, 16 (2016), A10. FORMULA G.f.: Product_{j >= 0} (1-x^(6*5^j))/(1-x^(5^j)). G.f.: Product_{j >= 0} Sum_{k=0..5} x^(k*5^j). a(0)=1; for k>0, a(5*k) = a(k)+a(k-1) and a(5*k+r) = a(k) with r=1,2,3,4. G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3 + x^4 + x^5) * A(x^5). - Ilya Gutkovskiy, Jul 09 2019 EXAMPLE a(140) = 4 because 140 = 125+5+5+5 = 125+5+5+1+1+1+1+1 = 25+25+25+25+25+5+5+5 = 25+25+25+25+25+5+5+1+1+1+1+1. MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,       add(b(n-j*5^i, i-1), j=0..min(5, n/5^i))))     end: a:= n-> b(n, ilog[5](n)): seq(a(n), n=0..120);  # Alois P. Heinz, May 01 2018 MATHEMATICA n:=250; r:=3; (* To get up to n-th term, need r such that 5^r < n < 5^(r+1) *) h5 :=  CoefficientList[ Series[ Product[ (1 - q^(6*5^i))/(1 - q^(5^i)) , {i, 0, r}], {q, 0, n} ], q] CROSSREFS Cf. A002487, A054390, A277872. Sequence in context: A177706 A130782 A055457 * A032542 A107038 A236833 Adjacent sequences:  A277870 A277871 A277872 * A277874 A277875 A277876 KEYWORD nonn AUTHOR Timothy B. Flowers, Nov 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 14:29 EDT 2019. Contains 328345 sequences. (Running on oeis4.)