login
A277767
T(n,k)=Number of nXk 0..2 arrays with every element equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0) both plus 1 mod 3 and minus 1 mod 3, with new values introduced in order 0..2.
12
0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 18, 17, 14, 0, 0, 80, 204, 330, 56, 0, 0, 356, 1989, 9741, 3666, 284, 0, 0, 1584, 21141, 275018, 270291, 46289, 1304, 0, 0, 7048, 220549, 7824415, 20049229, 8971150, 560809, 6248, 0, 0, 31360, 2292380, 221983169, 1487830718
OFFSET
1,8
COMMENTS
Table starts
.0......0..........0.............0.................0...................0
.0......1..........4............18................80.................356
.0......2.........17...........204..............1989...............21141
.0.....14........330..........9741............275018.............7824415
.0.....56.......3666........270291..........20049229..........1487830718
.0....284......46289.......8971150........1762881313........343944986355
.0...1304.....560809.....280603511......145416104585......74591651561541
.0...6248....6883464....8946059000....12253138042478...16513537201433122
.0..29408...84161576..283436060320..1025207978301185.3631417278822015869
.0.139472.1030163755.8998418743638.85977721285058269
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 4*a(n-1) +6*a(n-2) -12*a(n-3)
k=3: [order 11]
k=4: [order 44] for n>45
Empirical for row n:
n=2: a(n) = 4*a(n-1) +2*a(n-2)
n=3: [order 18]
n=4: [order 98]
EXAMPLE
Some solutions for n=4 k=4
..0..1..2..0. .0..1..2..0. .0..1..2..0. .0..1..2..0. .0..1..2..0
..2..1..1..1. .2..0..0..1. .2..2..0..1. .2..0..1..1. .2..2..1..1
..2..0..2..0. .0..1..0..2. .1..0..0..1. .0..1..2..0. .1..0..2..0
..1..2..1..0. .2..2..1..2. .2..1..2..2. .1..2..1..1. .2..0..1..2
CROSSREFS
Row 2 is A090017(n-1).
Sequence in context: A256269 A256279 A363436 * A107088 A137986 A330768
KEYWORD
nonn,tabl
AUTHOR
_R. H. Hardin_, Oct 29 2016
STATUS
approved