login
Triangle T(n,k) = floor(n/sqrt(k)) for 1 <= k <= n^2, read by rows.
11

%I #20 Sep 08 2022 08:46:17

%S 1,2,1,1,1,3,2,1,1,1,1,1,1,1,4,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,5,3,2,2,

%T 2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,4,3,3,2,2,2,2,2,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,4,4,3,3,2,2,2,2,2,2,2

%N Triangle T(n,k) = floor(n/sqrt(k)) for 1 <= k <= n^2, read by rows.

%H Jason Kimberley, <a href="/A277647/b277647.txt">Table of n, a(n) for n = 1..10416 (the first 31 rows of the triangle)</a>

%F T(n,k) = A000196(A277646(n,k)).

%F T(n,k)sqrt(k) <= n < (T(n,k)+1)sqrt(k).

%e The first five rows of the triangle are:

%e 1;

%e 2, 1, 1, 1;

%e 3, 2, 1, 1, 1, 1, 1, 1, 1;

%e 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

%e 5, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

%t Table[Floor[n/Sqrt@ k], {n, 7}, {k, n^2}] // Flatten (* _Michael De Vlieger_, Nov 24 2016 *)

%o (Magma)

%o A277647:=func<n,k|Isqrt(n^2 div k)>;

%o [A277647(n,k):k in[1..n^2],n in[1..7]];

%o (PARI) row(n) = for(k=1, n^2, print1(floor(n/sqrt(k)), ", ")); print("")

%o trianglerows(n) = for(k=1, n, row(k))

%o /* Print initial five rows of triangle as follows: */

%o trianglerows(5) \\ _Felix Fröhlich_, Nov 12 2016

%Y Cf. A010766, A277646, A277648.

%Y The 1000th row is A033432.

%K nonn,tabf,easy

%O 1,2

%A _Jason Kimberley_, Nov 09 2016