login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277491
Number of triangles in the standard triangulation of the n-th approximation of the Koch snowflake fractal.
2
1, 12, 120, 1128, 10344, 93864, 847848, 7642920, 68835432, 619715496, 5578225896, 50207178792, 451877192040, 4066945060008, 36602706866664, 329425167106344, 2964829725182568, 26683480411545000, 240151375243512552, 2161362583350043176, 19452264074784109416
OFFSET
0,2
COMMENTS
The rational function A_n = (a_0)/5 * (8 - 3(4/9)^n) where a_0=1 in the Wikipedia link below equals A_n = 1/9^n*a(n).
FORMULA
G.f.: (1-x) / ((1-4*x)*(1-9*x)).
a(n) = 13*a(n-1) - 36*a(n-2) for n>1, a(0)=1, a(1)=12.
a(n) = (8*9^n-3*4^n)/5.
EXAMPLE
a(1) = 9+3 = 12, because an equilateral triangle can be cut up into 9 triangles with side length one-third and 3 further triangles are stacked onto the three central side pieces.
MAPLE
L:=[1, 12]: for k from 3 to 34 do: L:=[op(L), 13*L[k-1]-36*L[k-2]]: od: print(L);
MATHEMATICA
Table[1/5*(8*9^n - 3*4^n), {n, 0, 20}] (* or *)
CoefficientList[Series[(1 - x)/((1 - 4 x) (1 - 9 x)), {x, 0, 20}], x] (* Michael De Vlieger, Nov 10 2016 *)
LinearRecurrence[{13, -36}, {1, 12}, 30] (* Harvey P. Dale, Feb 26 2023 *)
PROG
(PARI) Vec((1-x)/((1-4*x)*(1-9*x)) + O(x^30)) \\ Colin Barker, Oct 19 2016
(Magma) [(8*9^n-3*4^n)/5 : n in [0..30]]; // Wesley Ivan Hurt, Apr 11 2017
CROSSREFS
Cf. A277492.
Sequence in context: A008465 A291391 A115902 * A004332 A129329 A266393
KEYWORD
nonn,easy
AUTHOR
Dintle N Kagiso, Oct 17 2016
STATUS
approved