%I #95 Aug 06 2024 09:36:34
%S 0,1,1,2,1,3,1,5,2,3,1,11,1,3,3,15,1,11,1,11,3,3,1,45,2,3,5,11,1,19,1,
%T 51,3,3,3,62,1,3,3,45,1,19,1,11,11,3,1,195,2,11,3,11,1,45,3,45,3,3,1,
%U 113,1,3,11,188,3,19,1,11,3,19,1,345,1,3,11,11,3
%N Number of branching factorizations of n.
%C Per the formula, a(n) = 1 at prime n. As the sequence extends, additional values become more frequent than 1. These values can be characterized, for example, a(n) = 19 is seen at n corresponding to A007304, a(n) = 3 is seen at n corresponding to A006881, a(n) = 113 is seen at n corresponding to A085987. - _Bill McEachen_, Dec 28 2023
%C From _Antti Karttunen_, Jan 02 2024: (Start)
%C The value of a(n) depends only on the prime signature of n. In other words, for all i, j >= 1, it holds that A101296(i) = A101296(j) => a(i) = a(j). Moreover, it seems that the converse proposition also holds, that for all i, j >= 1, a(i) = a(j) => A101296(i) = A101296(j), i.e., for each distinct prime signature there exists a distinct value of a(n). This has been empirically checked up to the first 21001 prime signatures in A025487 (see A366884), and can be proved if one can show that the latter sequence (equally: A366377) is injective. If this conjecture holds, it would imply an unlimited number of statements like those given in the previous comment (see the formula section of A101296).
%C Questions: Are there any terms of the form 10k+4 or 10k+6? What is the asymptotic density of terms of the form 10k+5 (those ending with digit "5")? Compare to the data shown in A366884.
%C For squarefree n > 1, a(n) is never even, and apparently, never a multiple of five. See comments in A052886.
%C (End)
%H Daniel Mondot, <a href="/A277120/b277120.txt">Table of n, a(n) for n = 1..9999</a>
%H H.-K. Hwang, <a href="https://web.archive.org/web/20220220210857/http://algo.stat.sinica.edu.tw/hk/files/2005_07/pdf/Theoremes_limites_pour_les_structures_combinatories.pdf">Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques</a>, PhD thesis, in Ecole Polytechnique, 1994. See page 198.
%H A. Knopfmacher, M. E. Mays, <a href="https://citeseerx.ist.psu.edu/pdf/d7ed31ad7c11cad37442838d6614f658af539ef5">A survey of factorization counting functions</a>, International Journal of Number Theory, 1(4):563-581,(2005). See page 14.
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(1) = 0; for n > 1, a(n) = 1 + Sum_{d|n, 1 < d < n} a(d)*a(n/d). - _Antti Karttunen_, Nov 02 2016, after _Daniel Mondot_'s C program, simplified Dec 30 2023.
%F For all n >= 1, a(prime^n) = A007317(n), and a(product of n distinct primes) = A052886(n). - _Antti Karttunen_, Dec 31 2023
%e In this scheme, the following factorizations of 12 are counted as distinct: 12, 2 x 6, 2 x (2 x 3), 2 x (3 x 2), 3 x 4, 3 x (2 x 2), 4 x 3, (2 x 2) x 3, 6 x 2, (2 x 3) x 2, (3 x 2) x 2, thus a(12) = 11. - _Antti Karttunen_, Nov 02 2016, based on the illustration given at page 14 of Knopfmacher & Mays paper.
%e The following factorizations of 30 are counted as distinct: 30, 2 x 15, 15 x 2, 3 x 10, 10 x 3, 5 x 6, 6 x 5, 2 x (3 x 5), 2 x (5 x 3), 3 x (2 x 5), 3 x (5 x 2), 5 x (2 x 3), 5 x (3 x 2), (2 x 3) x 5, (2 x 5) x 3, (3 x 2) x 5, (3 x 5) x 2, (5 x 2) x 3, (5 x 3) x 2, thus a(30) = 19. - _Antti Karttunen_, Jan 02 2024
%t v[n_] := v[n] = If[n == 1, 0, 1 + Sum[If[d == 1 || d^2 > n, 0, If[d^2 == n, 1, 2]*v[d]*v[n/d]], {d, Divisors[n]}]]; Table[v[n], {n, 1, 100}] (* _Vaclav Kotesovec_, Jan 13 2024, after _Antti Karttunen_ *)
%o (C)
%o #include <stdio.h>
%o #define MAX 10000
%o /* Number of branching factorizations of n. */
%o unsigned long n, m, a, b, p, x, nbr[MAX];
%o int main(void)
%o {
%o for (x=n=1; n<MAX; ++n)
%o { if (x*x == n) ++x;
%o for (b=0, p=2; p<x; ++p)
%o {
%o if ((n%p)==0)
%o {
%o m = n/p;
%o if (m<p) break;
%o a = nbr[p] * nbr[m];
%o b += (m==p) ? a : 2*a;
%o }
%o }
%o nbr[n] = b+1;
%o }
%o printf("1 0\n");
%o for (n=2; n<MAX; ++n) printf("%lu %lu\n", n, nbr[n]);
%o return(0);
%o } /* _Daniel Mondot_, Oct 01 2016 */
%o (PARI) A277120(n) = if(1==n, 0, 1+sumdiv(n, d, if((1==d)||(d*d)>n,0,if((d*d)==n,1,2)*A277120(d)*A277120(n/d)))); \\ _Antti Karttunen_, Nov 02 2016, after _Daniel Mondot_'s C-program above.
%o (PARI) seq(n)={my(v=vector(n)); for(n=2, n, v[n] = 1 + sumdiv(n, d, v[d]*v[n/d])); v} \\ _Andrew Howroyd_, Nov 17 2018
%Y Cf. A007317, A052886, A074206, A101296, A277130, A366377 [= a(A108951(n))], A366884 [= a(A025487(n))].
%Y After n=1 differs from A104725 for the next time at n=32, where a(32) = 51, while A104725(32) = 52.
%K nonn
%O 1,4
%A _Michel Marcus_, Oct 01 2016
%E More terms from _Daniel Mondot_, Oct 01 2016