%I #5 Oct 03 2016 17:49:37
%S 0,3,4,6,7,13,14,16,17,18,19,22,23,29,30,33,34,39,40,42,43,44,45,48,
%T 49,53,55,58,59,61,62,64,67,68,71,76,77,80,81,84,85,88,89,92,93,94,95,
%U 100,102,105,107,110,112,113,115,118,119,121,122,124,126,127,131,134,135,137,138,142,143,146,147,152,154,157,158,160,161,163,165,166,168,171
%N a(n) = A275901(n) + A275902(n).
%C Specifies which diagonals the queens in A275901 and A275902 lie on.
%p # To get 10000 terms of A275902 (xx), A275901 (yy), A276783 (ss), -A276325 (dd)
%p M1:=100000; M2:=22000; M3:=10000;
%p xx:=Array(0..M1,0); yy:=Array(0..M1,0); ss:=Array(0..M1,0); dd:=Array(0..M1,0);
%p xx[0]:=0; yy[0]:=0; ss[0]:=0; dd[0]:=0;
%p for n from 1 to M2 do
%p sw:=-1;
%p for s from ss[n-1]+1 to M2 do
%p for i from 0 to s do
%p x:=s-i; y:=i;
%p if not member(x,xx,'p') and
%p not member(y,yy,'p') and
%p not member(x-y,dd,'p') then sw:=1; break; fi;
%p od: # od i
%p if sw=1 then break; fi;
%p od: # od s
%p if sw=-1 then lprint("error, n=",n); break; fi;
%p xx[n]:=x; yy[n]:=y; ss[n]:=x+y; dd[n]:=x-y;
%p od: # od n
%p [seq(xx[i],i=0..M3)]:
%p [seq(yy[i],i=0..M3)]:
%p [seq(ss[i],i=0..M3)]:
%p [seq(dd[i],i=0..M3)]:
%Y Cf A275901, A275902, A276325.
%Y Equals A276324 - 1.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Oct 03 2016