login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276502
Least k > 0 such that A045876(n) divides A045876(n*10^k).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6
OFFSET
1,10
COMMENTS
Corresponding values of A045876(n*10^a(n))/A045876(n) are 11, 11, 11, 11, 11, 11, 11, 11, 11, 101, 303, 303, 303, 303, 303, 303, 303, 303, 303, 101, 303, 303, 303, 303, 303, 303, 303, 303, 303, 101, ...
From Charlie Neder, Jul 16 2018: (Start)
From the formula for A045876(n) we make the following modifications:
- A (the mean of the digits) becomes S/D (sum of digits / # of digits)
- N (# of arrangements of digits) becomes R*Z (# of arrangements of nonzero digits * # of ways to insert the proper number of zeros)
Appending zeros to n does not change S or R, so if (S*R*Z*I/D)(n) divides (S*R*Z*I/D)(n*10^k), then (Z*I/D)(n) divides (Z*I/D)(n*10^k). However, Z, I, and D are completely determined by the number of digits of n and the number of those digits which are zero, so a(n) = a(A136400(n)). (End)
EXAMPLE
a(10) = 2 because A045876(10) = 1+10 = 11 does not divide A045876(100) = 1+10+100 = 111 and 11 divides A045876(1000) = 1+10+100+1000 = 1111.
MATHEMATICA
A045876[n_] := Total[FromDigits /@ Permutations[IntegerDigits[n]]]; a[n_] := For[k = 1, True, k++, If[Divisible[A045876[n*10^k], A045876[n]], Return[k] ] ]; Array[a, 101] (* Jean-François Alcover, Jul 26 2017 *)
PROG
(PARI) A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!);
A055642(n) = #Str(n);
A007953(n) = sumdigits(n);
A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n));
a(n) = {my(k = 1); while (A045876(n*(10^k)) % A045876(n), k++); k; }
CROSSREFS
Cf. A045876.
Sequence in context: A004218 A055642 A348674 * A138902 A211668 A255270
KEYWORD
nonn,base
AUTHOR
Altug Alkan, Sep 10 2016
STATUS
approved