OFFSET
0,2
COMMENTS
Satisfies recurrence relations system a(n) = 4*a(n-1) + 2*b(n-1), b(n) = 2*b(n-1) + a(n-1), a(0)=1, b(0)=2.
More generally, for the recurrence relations system a(n) = 4*a(n-1) + 2*b(n-1), b(n) = 2*b(n-1) + a(n-1), a(0)=k, b(0)=m solution is a(n) = (((sqrt(3) - 1)*k - 2*m)*(3 - sqrt(3))^n + (sqrt(3)*k + k + 2*m)*(3 + sqrt(3))^n)/(2*sqrt(3)), b(n) = ((-k + sqrt(3)*m + m)*(3 - sqrt(3))^n + (k + (sqrt(3) - 1)*m)*(3 + sqrt(3))^n)/(2*sqrt(3)).
Convolution of A030192 and {1, 2, 0, 0, 0, 0, 0, ...}.
LINKS
FORMULA
O.g.f.: (1 + 2*x)/(1 - 6*x + 6*x^2).
E.g.f.: (5*sqrt(3)*sinh(sqrt(3)*x) + 3*cosh(sqrt(3)*x))*exp(3*x)/3.
a(n) = 6*a(n-1) - 6*a(n-2).
a(n) = ((-5 + sqrt(3))*(3 - sqrt(3))^n + (5 + sqrt(3))*(3 + sqrt(3))^n)/(2*sqrt(3)).
Lim_{n->infinity} a(n+1)/a(n) = 3 + sqrt(3) = A165663.
MAPLE
a:=series((1+2*x)/(1-6*x+6*x^2), x=0, 25): seq(coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
LinearRecurrence[{6, -6}, {1, 8}, 25]
CoefficientList[Series[(1 + 2 x)/(1 - 6 x + 6 x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 26 2016 *)
PROG
(PARI) Vec((1+2*x)/(1-6*x+6*x^2) + O(x^99)) \\ Altug Alkan, Aug 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 26 2016
STATUS
approved