login
A276031
Number of edges in the graded poset of the partitions of n taken modulo 3, where a partition into k parts is joined to a partition into k+1 parts if the latter is a refinement of the former.
1
0, 1, 2, 5, 9, 14, 21, 30, 41, 54, 70, 89, 110, 135, 164, 195, 231, 272, 315, 364, 419, 476, 540, 611, 684, 765, 854, 945, 1045, 1154, 1265, 1386, 1517, 1650, 1794, 1949, 2106, 2275, 2456, 2639, 2835, 3044, 3255, 3480, 3719, 3960, 4216, 4487, 4760, 5049, 5354
OFFSET
1,3
LINKS
FORMULA
G.f.: (x^6-2*x^5+x^4-x^3+2*x^2+1)*x^2/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Aug 27 2016
EXAMPLE
a(6) = 14, the 14 edges are: (111111) - (21111), (21111) - (1110), (21111) - (2211), (1110) - (111), (1110) - (210), (2211) - (111), (2211) - (210), (2211) - (222), (210) - (00), (210) - (21), (111) - (21), (222) - (21), (00) - (0), (21) - (0).
CROSSREFS
Sequence in context: A139423 A363459 A026053 * A011905 A306674 A098065
KEYWORD
nonn
AUTHOR
Caleb Ji, Aug 17 2016
EXTENSIONS
More terms from Alois P. Heinz, Aug 27 2016
STATUS
approved