This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient 2
 1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -968383680827, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441, -8486725345098385062639014237 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS -log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion (t1/n + t2/n^3 + t3/n^5 + ...) where the numerators of the coefficients t1, t2, t3, ... are given by this sequence. The sequence is different from A002425, but the first difference is at index 60 (see the text files). LINKS G. C. Greubel, Table of n, a(n) for n = 1..275 (terms 1..64 from Richard P. Brent) R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016. FORMULA a(n) = numerator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))). EXAMPLE For n = 4, a(4) = numerator(-17/13336) = -17. MATHEMATICA Table[Numerator[(1 - 4^(-n)) BernoulliB[2 n] / (n (2 n - 1))], {n, 30}] (* Vincenzo Librandi, Sep 15 2016 *) PROG (MAGMA) [Numerator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..20]]; (PARI) a(n) = numerator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016 CROSSREFS Denominators are A275995. Sequence in context: A279370 A276592 A002425 * A046990 A059212 A058899 Adjacent sequences:  A275991 A275992 A275993 * A275995 A275996 A275997 KEYWORD frac,sign AUTHOR Richard P. Brent, Sep 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)