login
A275880
Solutions to a certain congruence.
2
26, 244, 305, 338, 9755, 18205, 33076, 48775, 60707, 70673, 82690, 92410, 95990, 101651, 112102, 165380, 167690, 184820, 191980, 211178, 224204, 232373, 258322, 274730, 297743, 330760, 335380, 369640, 383960, 422356, 448408, 516644, 516934, 549460, 583444
OFFSET
1,1
LINKS
J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp. 86 (304) (2017) 899-933. See Table 2.1.
FORMULA
From Lars Blomberg, Nov 28 2016: (Start)
The Gaussian factorial is G(N,n) = prod_{j=1,N and gcd(j,n)=1} (j).
Values n are restricted to the form n=w*p^alfa, with w=q_1^beta_1 * ... * q_s^beta_s and p, q_1, ... q_s are distinct primes, p = 1(mod 3), q_1, ... q_s = -1(mod 3) with s>=0, alfa, beta_1, ... beta_s >=1. The case s = 0 is interpreted as w = 1.
Values n must also satisfy G(floor((n-1)/3), n) = 1 (mod n). (End)
CROSSREFS
Cf. A275881.
Sequence in context: A163726 A293614 A245873 * A020537 A184461 A088889
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 17 2016
EXTENSIONS
a(10)-a(35) from Lars Blomberg, Nov 28 2016
STATUS
approved