OFFSET
1,1
COMMENTS
More precisely, numbers n = d_1 d_2 d_3 ... d_k such that (d_1)^3 + (d_k)^3 = d_2 d_3 ... d_{k-1}.
Here, d_2 may or may not be zero.
This sequence is infinite (it contains the numbers 1000...00010).
A274945 is a similar sequence where squares are used instead of cubes.
LINKS
Biswarup Banerjee, The StairCase Sequence, Para: 8
EXAMPLE
12176 is a term because 1^3 + 6^3 = 217, coming from 1_217_6;
607288 is a term because 6^3 + 8^3 = 728, coming from 6_0728_8.
MATHEMATICA
Select[Range[10^2, 10^5], (#[[1]]^3 + #[[-1]]^3) == FromDigits@ Most@ Rest@ # &@ IntegerDigits@ # &] (* Michael De Vlieger, Jul 25 2016 *)
PROG
(PARI) isok(n) = my(d = digits(n)); d[1]^3+d[#d]^3 == (n - d[#d] - 10^(#d-1)*d[1])/10; \\ Michel Marcus, Sep 24 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Biswarup Banerjee, Jul 23 2016
STATUS
approved