OFFSET
1,3
COMMENTS
a(1) = 0; for n>1, a(n) = smallest integer > a(n-1) such that lcm(a(n),a(i))+1 is square for all 1 <= i <= n-1.
EXAMPLE
After a(1)=0, a(2)=1, a(3)=3, we want m, the smallest number > 3 such that lcm(0,m)+1, lcm(2,m)+1 and lcm(3,m)+1 are squares: this is m = 8 = a(4).
MATHEMATICA
a = {0}; Do[AppendTo[a, SelectFirst[Range[Max@ a + 1, 3*10^5], Function[k, Times @@ Boole@ Map[IntegerQ@ Sqrt[LCM[a[[#]], k] + 1] &, Range[n - 1]] == 1]]], {n, 2, 12}]; a (* Michael De Vlieger, Jul 05 2016, Version 10 *)
PROG
(Sage)
seq = [0]
prev_element = 0
max_n = 13
for n in range(2, max_n+1):
next_element = prev_element + 1
while True:
all_match = True
for element in seq:
x = lcm( element, next_element ) + 1
if not is_square(x):
all_match = False
break
if all_match:
seq.append( next_element )
print(seq)
break
next_element += 1
prev_element = next_element
print(seq)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert C. Lyons, Jul 05 2016
STATUS
approved