login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Counterclockwise square spiral constructed by greedy algorithm, so that each row, column, and diagonal contains distinct numbers.
52

%I #147 Sep 13 2020 02:22:19

%S 1,2,3,4,2,3,4,5,6,1,4,6,2,1,6,5,3,1,5,2,6,1,2,4,5,3,7,8,5,4,9,7,8,3,

%T 10,11,4,7,8,6,3,9,5,7,8,9,10,11,12,6,8,9,11,10,12,13,7,6,10,9,12,13,

%U 14,15,8,2,9,12,7,10,11,13,14,10,9,6,13,5,3,15,16,7,1,10,13,12,14,11,15,3,8,5,1,12,11,14,7,4,2,16,9,17,1,8,11

%N Counterclockwise square spiral constructed by greedy algorithm, so that each row, column, and diagonal contains distinct numbers.

%C Presumably every row, column, and diagonal is a permutation of the natural numbers, but is there a proof? - _N. J. A. Sloane_, Jul 10 2016

%C The n-th cell in the spiral has coordinates x = A174344(n+1), y = A274923(n+1). - _N. J. A. Sloane_, Jul 11 2016

%C From _Robert G. Wilson v_, Dec 25 2016: (Start) [Memo: all these numbers need to decreased by 1, since the offset here is 0. See A324481. - _N. J. A. Sloane_, Jul 23 2017. Furthermore, the numbers don't seem correct, even after subtracting 1. - _N. J. A. Sloane_, Jul 04 2019]

%C Index of first appearance of k = 1,2,3,...: 1, 2, 3, 7, 8, 15, 17, 25, 35, 41, 47, 61, 62, 89, 98, 99, 121, 129, 130, 143, 197, 208, 225, 239, 271, ..., .

%C 1 appears at: 1, 4, 12, 19, 22, 33, 42, 68, 79, 120, 179, 194, 302, 311, 445, 489, 511, 558, 630, 708, 847, 877, 907, ..., .

%C 2 appears at: 2, 5, 9, 16, 48, 52, 70, 73, 88, 95, 110, 146, 280, 291, 309, 327, 488, 605, 656, 681, 735, 778, 1000, ..., .

%C 3 appears at: 3, 6, 10, 23, 29, 36, 56, 76, 97, 105, 153, 168, 184, 252, 338, 437, 457, 670, 818, 906, 953, 967, ..., . (End).

%H Alois P. Heinz, <a href="/A274640/b274640.txt">Table of n, a(n) for n = 0..20000</a>

%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.

%H Alois P. Heinz, <a href="/A274640/a274640_3.jpg">Distribution of a(n) for n <= 4010000</a>

%H Kerry Mitchell, <a href="/A274640/a274640.jpg">Color-coded version of spiral, (1): the colors represent the values, from black (small) to white (large)</a> (jpg file, low resolution)

%H Kerry Mitchell, <a href="/A274640/a274640_1.tiff">Color-coded version of spiral, (1a): the colors represent the values, from black (small) to white (large)</a> (tiff file, much higher resolution)

%H Kerry Mitchell, <a href="/A274640/a274640_1.jpg">Color-coded version of spiral, (2): values <= 100 are black and those > 100 are white.</a>

%H Zak Seidov, <a href="/A274640/a274640_4.jpg">Distribution of a(n) for first 20001 terms</a>

%e The spiral begins:

%e .

%e 9--16---2---4---7--14--11--12---1---5---8

%e | |

%e 17 8--15--14--13--12---9--10---6---7 3

%e | | | |

%e 1 2 4--11--10---3---8---7---9 13 15

%e | | | | | |

%e 8 9 7 3---5---6---1---2 4 12 11

%e | | | | | | | |

%e 11 12 8 1 2---4---3 6 5 10 14

%e | | | | | | | | | |

%e 15 7 6 5 3 1---2 4 8 11 12

%e | | | | | | | | |

%e 14 10 3 2 4---5---6---1 7 9 13

%e | | | | | | |

%e 7 11 9 6---1---2---4---5---3 8 10

%e | | | | |

%e 4 13 5---7---8---9--10--11--12---6 1

%e | | |

%e 12 14--10---9---6--13---5---3--15--16---7

%e |

%e 10--15---1--12--16---8--14--13--11--18--17

%e .

%e The 8 spokes (A274924-A274931) begin:

%e E: 1, 2, 4, 8, 11, 12, 16, 9, 19, 24, 22, ...

%e NE: 1, 3, 2, 9, 7, 8, 12, 15, 13, 17, 20, ...

%e N: 1, 4, 6, 3, 12, 14, 15, 18, 20, 26, 25, ...

%e NW: 1, 2, 3, 4, 8, 9, 7, 11, 14, 10, 22, ...

%e W: 1, 3, 5, 6, 7, 15, 10, 17, 13, 25, 14, ...

%e SW: 1, 4, 6, 5, 14, 10, 11, 23, 16, 18, 21, ...

%e S: 1, 5, 2, 9, 13, 8, 7, 11, 10, 17, 19, ...

%e SE: 1, 6, 5, 12, 16, 17, 21, 24, 27, 13, 15, ...

%p # Maple program from _Alois P. Heinz_, Jul 12 2016:

%p fx:= proc(n) option remember; `if`(n=1, 0, (k->

%p fx(n-1)+sin(k*Pi/2))(floor(sqrt(4*(n-2)+1)) mod 4))

%p end:

%p fy:= proc(n) option remember; `if`(n=1, 0, (k->

%p fy(n-1)-cos(k*Pi/2))(floor(sqrt(4*(n-2)+1)) mod 4))

%p end:

%p b:= proc() 0 end:

%p a:= proc(n) local x,y,s,i,t,m;

%p x, y:= fx(n+1), fy(n+1);

%p if b(x, y) > 0 then b(x, y)

%p else s:={};

%p for i do t:=b(x+i,y+i); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x-i,y-i); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x+i,y-i); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x-i,y+i); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x+i,y ); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x-i,y ); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x ,y+i); if t>0 then s:=s union {t} else break fi od;

%p for i do t:=b(x ,y-i); if t>0 then s:=s union {t} else break fi od;

%p for m while m in s do od;

%p b(x,y):= m

%p fi

%p end:

%p seq(a(n), n=0..1000);

%t fx[n_] := fx[n] = If[n == 1, 0, Function[k, fx[n-1] + Sin[k*Pi/2]][Mod[Floor[Sqrt[4*(n-2)+1]], 4]]]; fy[n_] := fy[n] = If[n == 1, 0, Function[k, fy[n-1] - Cos[k*Pi/2]][Mod[Floor[Sqrt[4*(n-2)+1]], 4]]]; Clear[b]; b[_, _] = 0; a[n_] := Module[{x, y, s, i, t, m}, {x, y} = {fx[n+1], fy[n+1]}; If[b[x, y] > 0, b[x, y], s = {};

%t For[i=1, True, i++, t=b[x+i, y+i]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x-i, y-i]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x+i, y-i]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x-i, y+i]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x+i, y ]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x-i, y ]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x , y+i]; If[t>0, s=Union[s,{t}], Break[]]];

%t For[i=1, True, i++, t=b[x , y-i]; If[t>0, s=Union[s,{t}], Break[]]];

%t m = 1; While[MemberQ[s, m], m++]; b[x, y] = m]]; Table[a[n], {n, 0, 1000}] (* _Jean-François Alcover_, Nov 14 2016, after _Alois P. Heinz_ *)

%Y Cf. A274641 (the same spiral, but starting with 0 not 1), A174344, A274923.

%Y The 8 spokes are A274924-A274931.

%Y The East-West axis is A275877 (see also A324680), the North-South axis is A276036.

%Y Positions of 1's and 2's give A273059 and A275116.

%Y In the same spirit as the infinite Sudoku array A269526.

%Y Cf. A324481 (position of first n).

%Y Cf. A274821 (the same construction on a hexagonal tiling).

%K nonn,nice

%O 0,2

%A _Zak Seidov_ and _Kerry Mitchell_, Jun 30 2016

%E Corrected and extended by _Alois P. Heinz_, Jul 12 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 05:38 EDT 2024. Contains 376185 sequences. (Running on oeis4.)