The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274377 E.g.f. satisfies: A(x)^A(x) = exp(2*x) * A(-x)^A(-x). 3
1, 1, 0, 1, 0, 16, 0, 736, 0, 67096, 0, 10163176, 0, 2306198896, 0, 732199108096, 0, 309860700130816, 0, 168568765338224896, 0, 114619705107961862656, 0, 95251358122177791486976, 0, 94984793274454431691503616, 0, 111939507886837612683516276736, 0, 153907136552991217284274400567296, 0, 244164979570216285201628515234840576, 0, 442692827509235885935744380253757341696, 0, 909667081143908558901949811564629988048896 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
a(2*n+1) = 6 (mod 10) for n>1 (conjecture).
LINKS
FORMULA
E.g.f.: 1 + Series_Reversion( log( sqrt( (1+x)^(1+x) / (1-x)^(1-x) ) ) ).
E.g.f.: 1 + Series_Reversion( (G(x) - G(-x))/2 ), where G(x) = Series_Reversion(x/LambertW(x) - 1) = (1+x)*log(1+x).
E.g.f.: 1 + Series_Reversion( x - Sum_{n>=1} x^(2*n+1)/(2*n*(2*n+1)) ).
If n is odd then a(n) ~ c * d^n * n^(n-1) / exp(n), where d = 1.37441749603820461..., c = 0.6508250221842049... . - Vaclav Kotesovec, Sep 22 2016
EXAMPLE
E.g.f.: A(x) = 1 + x + x^3/3! + 16*x^5/5! + 736*x^7/7! + 67096*x^9/9! + 10163176*x^11/11! + 2306198896*x^13/13! + 732199108096*x^15/15! + 309860700130816*x^17/17! + 168568765338224896*x^19/19! +...
such that A(x)^A(x) / A(-x)^A(-x) = exp(2*x).
RELATED SERIES.
A(x)^A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 56*x^5/5! + 426*x^6/6! + 2262*x^7/7! + 26944*x^8/8! + 191536*x^9/9! + 3126160*x^10/10! +...+ A275764(n)*x^n/n! +...
Series_Reversion(A(x) - 1) = x - x^3/6 - x^5/20 - x^7/42 - x^9/72 - x^11/110 - x^13/156 - x^15/210 - x^17/272 +...+ -x^(2*n+1)/(2*n*(2*n+1)) +...
Also,
Series_Reversion(A(x) - 1) = (G(x) - G(-x))/2, where G(x) = (1+x)*log(1+x) = Series_Reversion(x/LambertW(x) - 1), and begins:
G(x) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 - x^11/110 + x^12/132 +...+ (-x)^n/(n*(n-1)) +...
GENERATING METHOD.
Start with a(0)=1, a(1)=1, and set a(2*n)=0 for n>0, then use the following criterion to determine the odd-indexed terms.
Given partial sum A(x,2*n) = Sum_{k=0..2*n} a(k)*x^k/k!, and sufficiently large N, the odd-indexed term a(2*n+1) satisfies:
if t > a(2*n+1)/(2*n+1)!, then
t > [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N)
else if t <= a(2*n+1)/(2*n+1)! , then
t < [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N);
this criterion defines each term of this sequence for n>1.
Using the same method as above, but without setting even-indexed terms to zero, generates x/LambertW(x), e.g.f. of A177885.
RELATED SERIES.
log(A(x)) = x - x^2/2! + 3*x^3/3! - 10*x^4/4! + 60*x^5/5! - 346*x^6/6! + 3108*x^7/7! - 25600*x^8/8! + 306120*x^9/9! - 3283696*x^10/10! + 49021368*x^11/11! - 648526000*x^12/12! + 11606584080*x^13/13! - 182697457216*x^14/14! +...
PROG
(PARI) {a(n) = my(A = 1 + serreverse(x - sum(m=1, n\2+1, x^(2*m+1)/(2*m*(2*m+1)) ) +x^2*O(x^n) ) ); n!*polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) /* Generating method (using sufficiently large N and precision) */
\p100
{a(n) = my(N=10^(3*n), A=[1, 1]); for(i=0, n\2, A=concat(A, [0, 0]); A[#A] = round( (#A-1)!*polcoeff( N*1.* Ser(A)^(1-1/N), #A-1) )/(#A-1)! ); n!*A[n+1]}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A219950 A221271 A198804 * A221380 A221759 A111979
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 23 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 16:21 EDT 2024. Contains 372533 sequences. (Running on oeis4.)