login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273857
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 998", based on the 5-celled von Neumann neighborhood.
1
1, 6, 11, 28, 37, 66, 87, 152, 185, 254, 323, 464, 593, 794, 1027, 1352, 1661, 1998, 2351, 2816, 3341, 3990, 4663, 5452, 6277, 7214, 8203, 9372, 10629, 12050, 13503, 15180, 16837, 18566, 20343, 22288, 24341, 26602, 29007, 31632, 34337, 37166, 40067, 43248
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=998; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273855.
Sequence in context: A273409 A273484 A273794 * A034489 A231410 A285917
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jun 01 2016
STATUS
approved