login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273226
G.f. is the cube of the g.f. of A006950.
4
1, 3, 6, 13, 27, 51, 91, 159, 273, 455, 738, 1179, 1860, 2886, 4410, 6667, 9981, 14781, 21671, 31512, 45474, 65113, 92547, 130689, 183439, 255930, 355017, 489895, 672672, 919152, 1250107, 1692846, 2282895, 3066180, 4102224, 5468160, 7263217, 9614436, 12684633, 16682276
OFFSET
0,2
LINKS
M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273--284.
L. Wang, Arithmetic properties of partition triples with odd parts distinct, Int. J. Number Theory, 11 (2015), 1791--1805.
L. Wang, Arithmetic properties of partition quadruples with odd parts distinct, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647.
L. Wang, New congruences for partitions where the odd parts are distinct, J. Integer Seq. (2015), article 15.4.2.
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^3 / (1 - x^(4*k))^3, corrected by Vaclav Kotesovec, Mar 25 2017.
a(n) ~ 3*exp(sqrt(3*n/2)*Pi) / (16*n^(3/2)). - Vaclav Kotesovec, Mar 25 2017
MAPLE
N:= 50:
G:= mul((1+x^k)^3, k=1..N)/mul((1-x^(4*k))^3, k=1..N/4):
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Jan 21 2019
MATHEMATICA
s = QPochhammer[-1, x]^3/(8*QPochhammer[x^4, x^4]^3) + O[x]^40; CoefficientList[s, x] (* Jean-François Alcover, May 20 2016 *)
CROSSREFS
Cf. A006950.
Sequence in context: A215989 A215980 A215979 * A291726 A280563 A281283
KEYWORD
nonn
AUTHOR
M.S. Mahadeva Naika, May 18 2016
EXTENSIONS
Edited by N. J. A. Sloane, May 26 2016
STATUS
approved