OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273--284.
L. Wang, Arithmetic properties of partition triples with odd parts distinct, Int. J. Number Theory, 11 (2015), 1791--1805.
L. Wang, Arithmetic properties of partition quadruples with odd parts distinct, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647.
L. Wang, New congruences for partitions where the odd parts are distinct, J. Integer Seq. (2015), article 15.4.2.
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^3 / (1 - x^(4*k))^3, corrected by Vaclav Kotesovec, Mar 25 2017.
a(n) ~ 3*exp(sqrt(3*n/2)*Pi) / (16*n^(3/2)). - Vaclav Kotesovec, Mar 25 2017
MAPLE
N:= 50:
G:= mul((1+x^k)^3, k=1..N)/mul((1-x^(4*k))^3, k=1..N/4):
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Jan 21 2019
MATHEMATICA
s = QPochhammer[-1, x]^3/(8*QPochhammer[x^4, x^4]^3) + O[x]^40; CoefficientList[s, x] (* Jean-François Alcover, May 20 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
M.S. Mahadeva Naika, May 18 2016
EXTENSIONS
Edited by N. J. A. Sloane, May 26 2016
STATUS
approved