%I #16 May 14 2016 13:43:46
%S 1,3,3,7,37,37,37,37,37,37,59,59,59,59,73,73,73,73,73,97,97,97,137,
%T 157,157,157,157,157,157,157,157,157,157,157,157,157,157,157,157,157,
%U 251,251,251,251,251,251,251,251,251,251,277,277,277,277,277,277,277
%N Discriminator of sequence A001566.
%C The discriminator of a sequence is the least integer k such that the first n terms of the sequence are pairwise incongruent, modulo k.
%H Robert Israel, <a href="/A273043/b273043.txt">Table of n, a(n) for n = 1..10000</a>
%p N:= 1000: # to get a(1)..a(n)
%p nmax:= 0:
%p for m from 1 while nmax <= N do
%p a:= 3 mod m; A:= {a};
%p for n from 1 while nops(A) = n do
%p a:= a^2 - 2 mod m;
%p A:= A union {a};
%p od:
%p for k from nmax+1 to n-1 do v[k]:= m od:
%p nmax:= max(nmax,n-1);
%p od:
%p seq(v[k],k=1..N); # _Robert Israel_, May 13 2016
%Y Cf. A001566.
%K nonn
%O 1,2
%A _Jeffrey Shallit_, May 13 2016
%E a(13)-a(28) from _Tom Edgar_, May 13 2016
%E a(29)-a(57) from _Robert Israel_, May 13 2016