login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272436
Semiprimes such that sum of digits equals product of digits.
2
4, 6, 9, 22, 123, 213, 321, 1142, 1214, 1241, 4121, 11215, 11521, 12115, 12151, 21151, 22121, 51211, 111261, 112611, 116121, 116211, 121161, 162111, 211611, 261111, 621111, 1111217, 1111413, 1111431, 1111721, 1112117, 1117121, 1117211, 1121117, 1121171, 1121711
OFFSET
1,1
COMMENTS
Intersection of A001358 and A034710.
9 is the only member with digit 9. No member has more than one digit 3 or 6. - Robert Israel, May 06 2016
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..17009 (n = 1..3104 from Robert Israel)
EXAMPLE
1142 appears in the list because 1142 = 2*571 that is semiprime. Also, 1+1+4+2 = 8 = 1*1*4*2.
11215 appears in the list because 1142 = 5*2243 that is semiprime. Also, 1+1+2+1+5 = 10 = 1*1*2*1*5.
MAPLE
R:= proc(k, d, u, v) option remember;
if k = 1 then
if d = v - u then {[d]}
else {}
fi
else
`union`(seq(map(t -> [op(t), s], procname(k-1, d-s, u+s*k, v*k^s)), s=0..d))
fi
end proc:
A034710:= proc(d)
local res, r, i, t;
res:= NULL;
for r in R(9, d, 0, 1) do
res:= res, op(map(t -> add(10^(i-1)*t[i], i=1..nops(t)), combinat:-permute([seq(i$r[i], i=1..9)])));
od:
sort([res]);
end proc:
map(op, [seq(select(t -> numtheory:-bigomega(t)=2, A034710(i)), i=1..11)]); # Robert Israel, May 06 2016
MATHEMATICA
Select[Range[10000000], (Plus @@ IntegerDigits[#]) == (Times @@ IntegerDigits[#]) && PrimeOmega[#] == 2 &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, May 06 2016
STATUS
approved