The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271703 Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n. 35

%I #83 Nov 30 2023 14:44:28

%S 1,0,1,0,2,1,0,6,6,1,0,24,36,12,1,0,120,240,120,20,1,0,720,1800,1200,

%T 300,30,1,0,5040,15120,12600,4200,630,42,1,0,40320,141120,141120,

%U 58800,11760,1176,56,1,0,362880,1451520,1693440,846720,211680,28224,2016,72,1

%N Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n.

%C The Lah numbers can be seen as the case m=1 of the family of triangles T_{m}(n,k) = T_{m}(n-1,k-1)+(k^m+(n-1)^m)*T_{m}(n-1,k) (see the link 'Partition transform').

%C This is the Sheffer triangle (lower triangular infinite matrix) (1, x/(1-x)), an element of the Jabotinsky subgroup of the Sheffer group. - _Wolfdieter Lang_, Jun 12 2017

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., pp. 312, 552.

%D I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik, 7:203-213, 1955.

%D T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, 2016

%H Michael De Vlieger, <a href="/A271703/b271703.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened)

%H Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Celeste/celeste3.html"> Two Approaches to Normal Order Coefficients</a>. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.

%H M. F. Hasler and P. Luschny, <a href="/wiki/A271703/formulas">Formulas for A271703</a>, OEIS Wiki, Aug. 2017.

%H S. A. Joni, G.-C. Rota, and B. Sagan, <a href="http://dx.doi.org/10.1016/0012-365X(81)90219-3">From sets to functions: Three elementary examples</a>, Discrete Mathematics, Volume 37, Issues 2-3, 1981, 193-202.

%H Marin Knežević, Vedran Krčadinac, and Lucija Relić, <a href="https://arxiv.org/abs/2012.15307">Matrix products of binomial coefficients and unsigned Stirling numbers</a>, arXiv:2012.15307 [math.CO], 2020.

%H D. E. Knuth, <a href="http://arxiv.org/abs/math/9207221">Convolution polynomials</a>, Mathematica J. 2.1 (1992), no. 4, 67-78.

%H Peter Luschny, <a href="http://luschny.de/math/Lah/">Lah numbers</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/P-Transform#.E2.99.A6.C2.A0_Stirling_and_Lah_numbers_of_higher_order">Partition transform</a>

%H Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See. p. 18.

%H Piotr Miska and Maciej Ulas, <a href="https://arxiv.org/abs/1904.03395">On some properties of the number of permutations being products of pairwise disjoint d-cycles</a>, arXiv:1904.03395 [math.NT], 2019.

%H Emanuele Munarini, <a href="https://doi.org/10.2298/AADM180226017M">Combinatorial identities involving the central coefficients of a Sheffer matrix</a>, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.

%F For a collection of formulas see the 'Lah numbers' link.

%F T(n, k) = A097805(n, k)*n!/k! = (-1)^k*P_{n, k}(1,1,1,...) where P_{n, k}(s) is the partition transform of s.

%F T(n, k) = coeff(n! * P(n), x, k) with P(n) = (1/n)*(Sum_{k=0..n-1}(x(n-k)*P(k))), for n >= 1 and P(n=0) = 1, with x(n) = n*x. See A036039. - _Johannes W. Meijer_, Jul 08 2016

%F From _Wolfdieter Lang_, Jun 12 2017: (Start)

%F E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (that is egf of the triangle) is exp(x*t/(1-t)) (a Sheffer triangle of the Jabotinsky type).

%F E.g.f. column k: (t/(1-t))^k/k!.

%F Three term recurrence: T(n, k) = T(n-1, k-1) + (n-1+k)*T(n, k-1), n >= 1, k = 0..n, with T(0, 0) =1, T(n, -1) = 0, T(n, k) = 0 if n < k.

%F T(n, k) = binomial(n, k)*fallfac(x=n-1, n-k), with fallfac(x, n) = Product_{j=0..(n-1)} (x - j), for n >= 1, and 0 for n = 0.

%F risefac(x, n) = Sum_{k=0..n} T(n, k)*fallfac(k), with risefac(x, n) = Product_{j=0..(n-1)} (x + j), for n >= 1, and 0 for n = 0.

%F See Graham et al., exercise 31, p. 312, solution p. 552. (End)

%F Formally, let f_n(x) = Sum_{k>n} (k-1)!*x^k; then f_n(x) = Sum_{k=0..n} T(n, k)* x^(n+k)*f_0^((k))(x), where ^((k)) stands for the k-th derivative. - _Luc Rousseau_, Dec 27 2020

%F T(n, k) = Sum_{j=k..n} A354795(n, j)*A360177(j, k). - _Mélika Tebni_, Feb 02 2023

%F T(n, k) = binomial(n, k)*(n-1)!/(k-1)! for n, k > 0. - _Chai Wah Wu_, Nov 30 2023

%e As a rectangular array (diagonals of the triangle):

%e 1, 1, 1, 1, 1, 1, ... A000012

%e 0, 2, 6, 12, 20, 30, ... A002378

%e 0, 6, 36, 120, 300, 630, ... A083374

%e 0, 24, 240, 1200, 4200, 11760, ... A253285

%e 0, 120, 1800, 12600, 58800, 211680, ...

%e 0, 720, 15120, 141120, 846720, 3810240, ...

%e A000007, A000142, A001286, A001754, A001755, A001777.

%e The triangle T(n,k) begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...

%e 0: 1

%e 1: 0 1

%e 2: 0 2 1

%e 3: 0 6 6 1

%e 4: 0 24 36 12 1

%e 5: 0 120 240 120 20 1

%e 6: 0 720 1800 1200 300 30 1

%e 7: 0 5040 15120 12600 4200 630 42 1

%e 8: 0 40320 141120 141120 58800 11760 1176 56 1

%e 9: 0 362880 1451520 1693440 846720 211680 28224 2016 72 1

%e 10: 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1

%e ... - _Wolfdieter Lang_, Jun 12 2017

%p T := (n, k) -> `if`(n=k, 1, binomial(n-1,k-1)*n!/k!):

%p seq(seq(T(n, k), k=0..n), n=0..9);

%t T[n_, k_] := Binomial[n, k]*FactorialPower[n-1, n-k];

%t Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 20 2017 *)

%o (Sage)

%o @cached_function

%o def T(n,k):

%o if k<0 : return 0

%o if k==n: return 1

%o return T(n-1,k-1) + (k+n-1)*T(n-1,k)

%o for n in (0..8): print([T(n,k) for k in (0..n)])

%Y Variants: A008297 the main entry for these numbers, A105278, A111596 (signed).

%Y A000262 (row sums). Largest number of the n-th row in A002868.

%Y Cf. A097805, A354795, A360177.

%K nonn,easy,tabl

%O 0,5

%A _Peter Luschny_, Apr 14 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 21:51 EDT 2024. Contains 372523 sequences. (Running on oeis4.)