The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271502 Number with digits abc...z such that n = (a+b+c+...+z+a^b+b^c+c^d+...+y^z)+(a*b*c*...*z*a^b*b^c*c^d*...*y^z). 0
 0, 18, 81, 1323 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Another variant of narcissistic numbers. No other terms below 10^5. a(5), if it exists, is > 3*10^10. - Lars Blomberg, Aug 08 2016 LINKS José Camacho Medina's Matematico Fresnillense, Otra Variante de Números Narcisistas (in Spanish). EXAMPLE 18 is a term because 18 = (1+8+1^8)+(1*8*1^8); 81 is a term because 81 = (8+1+8^1)+(8*1*8^1); 1323 is a term because 1323 = (1+3+2+3+1^3+3^2+2^3)+(1*3*2*3*1^3*3^2*2^3). MATHEMATICA CC = Table[( Sum[ Mod[(Floor[f/10^n]), 10] , {n, 0, Floor[Log[10, f]] }]), {f, 1, 1323}]; DD = Table[( Sum[ (Mod[(Floor[f/10^n]), 10] ) ^(Mod[(Floor[f/ 10^(n - 1)]), 10] ) , {n, 1, Floor[Log[10, f]] }]), {f, 1, 1323}]; EE = Table[( Product[ Mod[(Floor[f/10^n]), 10] , {n, 0, Floor[Log[10, f]] }]), {f, 1, 555}]; FF = Table[( Product[ (Mod[(Floor[f/10^n]), 10] ) ^(Mod[(Floor[f/10^(n - 1)]), 10] ) , {n, 1, Floor[Log[10, f]] }]), {f, 1, 1323}]; SUMA = (CC+DD) + (EE*FF) RES = SUMA - Table[n, {n, 1, 1323}] Position[SS, 0] CROSSREFS Cf. A005188. Sequence in context: A338039 A085504 A214531 * A235641 A087636 A156218 Adjacent sequences: A271499 A271500 A271501 * A271503 A271504 A271505 KEYWORD nonn,base,more AUTHOR José de Jesús Camacho Medina, Apr 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:35 EST 2022. Contains 358582 sequences. (Running on oeis4.)