login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271460
Triangle read by rows: T(n,m) = (m/(n-m))*Sum_{k=1..n-m}((-1)^k*binomial(m-1,k-1)*binomial(3*(n-m)-k-1,n-m-k)), T(n,n)=1.
0
1, -1, 1, -2, -2, 1, -7, -3, -3, 1, -30, -10, -3, -4, 1, -143, -42, -10, -2, -5, 1, -728, -198, -42, -8, 0, -6, 1, -3876, -1001, -198, -35, -5, 3, -7, 1, -21318, -5304, -1001, -168, -25, -2, 7, -8, 1, -120175, -29070, -5304, -858, -126, -15, 0, 12, -9, 1
OFFSET
1,4
FORMULA
G.f.: -1+1/(1-x*y+x*y*(4*sin(asin((3^(3/2)*sqrt(x))/2)/3)^2)/3)
T(n,m) = (1/(n-m))*(m*(-1)^(n-m)*Sum_{k=1..n-m} binomial(k-1,n-m-1)*binomial(-2*n+3*m-1,k-1)*binomial(3*n-4*m,n-m-k)), n>m, T(n,n)=1
EXAMPLE
1;
-1,1;
-2,-2,1;
-7,-3,-3,1;
-30,-10,-3,-4,1;
-143,-42,-10,-2,-5,1;
-728,-198,-42,-8,0,-6,1;
PROG
(Maxima)
T(n, m):=if n=m then 1 else m*(-1)^(n-m)/(n-m)*sum((binomial(k-1, n-m-1)*binomial(-2*n+3*m-1, k-1)*binomial(3*n-4*m, n-m-k)), k, 1, n-m);
CROSSREFS
Cf. A006013.
Sequence in context: A378345 A108338 A021455 * A248924 A307455 A136502
KEYWORD
sign,tabl
AUTHOR
Vladimir Kruchinin, Apr 13 2016
STATUS
approved