This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271460 Triangle read by rows: T(n,m) = (m/(n-m))*Sum_{k=1..n-m}((-1)^k*binomial(m-1,k-1)*binomial(3*(n-m)-k-1,n-m-k)), T(n,n)=1. 0
 1, -1, 1, -2, -2, 1, -7, -3, -3, 1, -30, -10, -3, -4, 1, -143, -42, -10, -2, -5, 1, -728, -198, -42, -8, 0, -6, 1, -3876, -1001, -198, -35, -5, 3, -7, 1, -21318, -5304, -1001, -168, -25, -2, 7, -8, 1, -120175, -29070, -5304, -858, -126, -15, 0, 12, -9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS FORMULA G.f.: -1+1/(1-x*y+x*y*(4*sin(asin((3^(3/2)*sqrt(x))/2)/3)^2)/3) T(n,m) = (1/(n-m))*(m*(-1)^(n-m)*Sum_{k=1..n-m} binomial(k-1,n-m-1)*binomial(-2*n+3*m-1,k-1)*binomial(3*n-4*m,n-m-k)), n>m, T(n,n)=1 EXAMPLE 1; -1,1; -2,-2,1; -7,-3,-3,1; -30,-10,-3,-4,1; -143,-42,-10,-2,-5,1; -728,-198,-42,-8,0,-6,1; PROG (Maxima) T(n, m):=if n=m then 1 else m*(-1)^(n-m)/(n-m)*sum((binomial(k-1, n-m-1)*binomial(-2*n+3*m-1, k-1)*binomial(3*n-4*m, n-m-k)), k, 1, n-m); CROSSREFS Cf. A006013. Sequence in context: A278792 A108338 A021455 * A248924 A307455 A136502 Adjacent sequences:  A271457 A271458 A271459 * A271461 A271462 A271463 KEYWORD sign,tabl AUTHOR Vladimir Kruchinin, Apr 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 16:08 EDT 2019. Contains 328223 sequences. (Running on oeis4.)