
COMMENTS

Conjecture: We have {u^3+a*v^3+b*x^3+c*y^3+d*z^3: u,v,x,y,z = 0,1,2,...} = {0,1,2,...} whenever (a,b,c,d) is among the following 32 quadruples: (1,2,2,3), (1,2,2,4), (1,2,3,4), (1,2,4,5), (1,2,4,6), (1,2,4,9), (1,2,4,10), (1,2,4,11), (1,2,4,18), (1,3,4,6), (1,3,4,9), (1,3,4,10), (2,2,4,5), (2,2,6,9), (2,3,4,5), (2,3,4,6), (2,3,4,7), (2,3,4,8), (2,3,4,9), (2,3,4,10), (2,3,4,12), (2,3,4,15), (2,3,4,18), (2,3,5,6), (2,3,6,12), (2,3,6,15), (2,4,5,6), (2,4,5,8), (2,4,5,9), (2,4,5,10), (2,4,6,7), (2,4,7,10).
In particular, this implies that a(n) > 0 for all n = 0,1,2,... We guess that a(n) = 1 only for n = 0, 1, 2, 18, 23, 79, 100.
If {m*u^3+a*v^3+b*x^3+c*y^3+d*z^3: u,v,x,y,z = 0,1,2,...} = {0,1,2,...} with 1 <= m <= a <= b <= c <= d, then m = 1, and we can show that (a,b,c,d) must be among the 32 quadruples listed in the conjecture (cf. Theorem 1.2 of the linked 2017 paper).
It is known that there are exactly 54 quadruples (a,b,c,d) with 1 <= a <= b <= c <= d such that {a*w^2+b*x^2+c*y^2+d*z^2: w,x,y,z = 0,1,2,...} = {0,1,2,...}.
See also A271099 and A271169 for conjectures refining Waring's problem.
We also conjecture that if P(u,v,x,y,z) is one of the four polynomials u^6+v^3+2*x^3+4*y^3+5*z^3 and a*u^6+v^3+2*x^3+3*y^3+4*z^3 (a = 5,8,12) then any natural number can be written as P(u,v,x,y,z) with u,v,x,y,z nonnegative integers.  ZhiWei Sun, Apr 06 2016
