The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270800 Septic artiads: primes p congruent to 1 mod 14 for which all solutions of the congruence x^3 + x^2 - 2x - 1 == 0 (mod p) are 7th power residues. 7
 14197, 21617, 23801, 24977, 25999, 34763, 37549, 41959, 42407, 45053, 45599, 54713, 55987, 56099, 60271, 61657, 63463, 66067, 72577, 75307, 76343, 76777, 79283, 83357, 88397, 90469, 91309, 99611, 107927, 111217, 111301, 111791, 124699, 126127, 131251, 132287 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..1000 E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131. See page 126 (but beware errors). E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy] PROG (Sage) def is_septic_artiad(n) : ....if not (n % 14 == 1 and is_prime(n)) : return false ....R. = PolynomialRing(GF(n)) ....return all(r[0]^((n-1)//7) == 1 for r in (t^3 + t^2 - 2*t - 1).roots()) end # Eric M. Schmidt, Apr 02 2016 CROSSREFS Cf. A001583. Sequence in context: A258532 A258525 A254917 * A271247 A212949 A205202 Adjacent sequences:  A270797 A270798 A270799 * A270801 A270802 A270803 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 01 2016 EXTENSIONS Definition added and sequence extended and corrected by Eric M. Schmidt, Apr 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 17:17 EST 2020. Contains 331280 sequences. (Running on oeis4.)