login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = A001359(n) - A001359(n+1) - A001359(n+2) + A001359(n+3).
0

%I #15 Mar 20 2016 12:59:14

%S 4,6,6,6,0,12,-6,0,6,0,0,-24,18,6,0,0,0,24,42,-24,-42,48,18,-30,-30,

%T -6,0,126,-6,-144,18,18,108,-12,-120,0,12,48,48,-12,-66,-36,6,96,6,

%U -78,-18,90,6,-72,18,-24,36,60,-60,-30,12,-6,12,6,-24,-30,12,-12,78,18,-54,0,0,138,0,-102,-12,-42

%N a(n) = A001359(n) - A001359(n+1) - A001359(n+2) + A001359(n+3).

%C 6*k appears for the form of a(n) for n > 1.

%C What is the most repeated value of a(n)?

%C See A270535 for the position of 0's in this sequence.

%F a(n) = A053319(n+2) - A053319(n).

%e a(1) = 4 because a(1) = A001359(1) - A001359(2) - A001359(3) + A001359(4) = 3 - 5 - 11 + 17 = 4.

%t s = Select[Prime@Range[10^6], PrimeQ[# + 2] &]; Table[s[[n]] - s[[n + 1]] - s[[n + 2]] + s[[n + 3]], {n, 74}] (* _Michael De Vlieger_, Mar 19 2016, after _Robert G. Wilson v_ at A001359 *)

%o (PARI) t(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2}

%o a(n) = t(n) + t(n+3) - t(n+1) - t(n+2);

%o for(n=1, 200, print1(a(n), ", "));

%Y Cf. A001359, A006512, A014574, A053319.

%K sign

%O 1,1

%A _Altug Alkan_, Mar 18 2016