%I #16 Mar 04 2020 03:24:19
%S 1,2,3,5,8,9,14,14,15,15,15,30,30,30,30,30,35,35,35,35,59,59,59,59,79,
%T 79,83,83,83,83,83,83,120,120,120,157,157,157,157,173,173,173,173,173,
%U 193,193,193,193,193,193,193,193,193,193,193,311,311,311,311,337,337,337,337,337,409,409,409,409,431
%N Discriminator of the Fibonacci numbers; least positive integer r such that F(2), F(3), ..., F(n+1) are all incongruent modulo r
%H Alois P. Heinz, <a href="/A270151/b270151.txt">Table of n, a(n) for n = 1..5000</a>
%H Arnold, L. K.; Benkoski, S. J.; and McCabe, B. J.; <a href="http://www.jstor.org/stable/2323651">The discriminator (a simple application of Bertrand's postulate)</a>. Amer. Math. Monthly 92 (1985), 275-277.
%H A. de Clercq, F. Luca, L. Martirosyan, M. Matthis, P. Moree, M.A. Stoumen and M. Weiß, <a href="https://arxiv.org/abs/2003.01559">Binary recurrences for which powers of two are discriminating moduli</a>, arXiv:2003.01559 [math.NT], 2020. See Table 1 p. 7.
%Y Cf. A016726.
%K nonn
%O 1,2
%A _Jeffrey Shallit_, Mar 12 2016