OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Seems to differ from A270006 only at a(1). - R. J. Mathar, Mar 21 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
Robert Price, Table of n, a(n) for n = 0..128
Robert Price, Diagrams of the first 20 stages.
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
FORMULA
Conjectures from Colin Barker, Mar 09 2016: (Start)
a(n) = (-1)*((-1+(-1)^n)*(1+2*n)^2)/2 for n>0.
a(n) = 0 for n>0 and even.
a(n) = 4*n^2+4*n+1 for n odd.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>6.
G.f.: (1+9*x-3*x^2+22*x^3+3*x^4+x^5-x^6) / ((1-x)^3*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=7; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 08 2016
STATUS
approved