login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269913
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.
1
4, -4, 44, -44, 116, -116, 220, -220, 356, -356, 524, -524, 724, -724, 956, -956, 1220, -1220, 1516, -1516, 1844, -1844, 2204, -2204, 2596, -2596, 3020, -3020, 3476, -3476, 3964, -3964, 4484, -4484, 5036, -5036, 5620, -5620, 6236, -6236, 6884, -6884, 7564
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 08 2016: (Start)
a(n) = 4*(1+n+2*(-1)^n*n+(-1)^n*n^2).
a(n) = 4*(1+n+2*1*n+1*n^2) for n even.
a(n) = 4*(1-n-n^2) for n odd.
a(n) = -a(n-1)+2*a(n-2)+2*a(n-3)-a(n-4)-a(n-5) for n>4.
G.f.: 4*(1+8*x^2-x^4) / ((1-x)^2*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=3; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A269910.
Sequence in context: A016498 A197798 A082794 * A197933 A198005 A027501
KEYWORD
sign,easy
AUTHOR
Robert Price, Mar 07 2016
STATUS
approved