OFFSET
1,1
COMMENTS
a(7) has 216 digits (see b-file).
Fermat primes > 3 from A019434 are terms.
Corresponding values of k: 0, 2, 4, 8, 16, 39, 715, ....
Note that for k = 1, 2^k + 4*(-1)^k - 3 = -5.
For further k values, see A059609. (2^k-7 is divisible by 3 for even k.) - Jeppe Stig Nielsen, Nov 18 2019
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..10 (terms 1..7 from Jaroslav Krizek).
MATHEMATICA
Select[Table[2^k+4(-1)^k-3, {k, 0, 50}], Positive[#]&&PrimeQ[#]&] (* Harvey P. Dale, Sep 14 2019 *)
PROG
(Magma) [2] cat [2^k + 4*(-1)^k - 3: k in [2..300] | IsPrime(2^k + 4*(-1)^k - 3)];
(PARI) for (k=0, 40, my(j=2^k+4*(-1)^k-3); if(isprime(j), print1(j, ", "))) \\ Hugo Pfoertner, Nov 21 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 06 2016
STATUS
approved