login
A269642
Number of length-5 0..n arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.
1
12, 159, 796, 2637, 6876, 15307, 30444, 55641, 95212, 154551, 240252, 360229, 523836, 741987, 1027276, 1394097, 1858764, 2439631, 3157212, 4034301, 5096092, 6370299, 7887276, 9680137, 11784876, 14240487, 17089084, 20376021, 24150012
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 5*n + 1.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: x*(12 + 87*x + 22*x^2 + 6*x^3 - 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=3:
..1. .0. .0. .1. .1. .2. .0. .2. .0. .2. .1. .0. .3. .2. .0. .3
..3. .0. .0. .0. .2. .3. .1. .3. .1. .2. .1. .3. .2. .0. .2. .0
..1. .1. .1. .2. .2. .2. .2. .0. .3. .3. .0. .0. .0. .1. .0. .0
..0. .3. .2. .3. .1. .3. .3. .1. .1. .2. .0. .3. .3. .0. .0. .1
..3. .1. .2. .3. .0. .1. .1. .2. .2. .3. .2. .0. .0. .0. .1. .2
CROSSREFS
Row 5 of A269640.
Sequence in context: A015000 A220225 A213376 * A269411 A347748 A226297
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 02 2016
STATUS
approved