OFFSET
1,1
COMMENTS
The sequence starts with a(1) = 2 and is always extended with the smallest integer not yet present that does not lead to a contradiction.
LINKS
Jean-Marc Falcoz and Chai Wah Wu, Table of n, a(n) for n = 1..10000 Terms for n = 1..2018 from Jean-Marc Falcoz
EXAMPLE
The sequence starts with 2, 1, 4, 6, 13, 11, 19, 8, 15, 22... which produces the partial sums (of digits) 2, 3 (=2+1), 7 (=3+4), 13 (=7+6), 17 (=13+1+3), 19 (=17+1+1), 29 (=19+1+9)... Those successive partial sums of digits are all prime.
MATHEMATICA
A269415L[n_] := Module[{lis = {}, b = 0}, Do[Do[If[! MemberQ[lis, a] && PrimeQ[b + Total[IntegerDigits[a]]], lis = Append[lis, a]; b += Total[IntegerDigits[a]]; Break[]], {a, Infinity}], {max, n}]; lis]; A269415L[82] (* JungHwan Min, Nov 09 2016 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Eric Angelini and Jean-Marc Falcoz, Nov 09 2016
STATUS
approved