|
|
A268762
|
|
Number of n X 4 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
|
|
1
|
|
|
5, 44, 223, 1148, 5170, 23156, 99057, 418924, 1736105, 7122856, 28898144, 116346184, 465034573, 1848051516, 7306228767, 28758043956, 112751067666, 440538622908, 1715952146561, 6665380161836, 25826102521633, 99840968906384
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) + 10*a(n-2) - 32*a(n-3) - 47*a(n-4) + 40*a(n-5) + 38*a(n-6) - 12*a(n-7) - 9*a(n-8).
Empirical g.f.: x*(5 + 24*x - 3*x^2 - 24*x^3 - 9*x^4) / (1 - 2*x - 7*x^2 + 2*x^3 + 3*x^4)^2. - Colin Barker, Jan 14 2019
|
|
EXAMPLE
|
Some solutions for n=4:
..1..0..0..0. .1..0..0..0. .1..0..1..0. .0..0..0..1. .0..0..1..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .1..0..0..0. .0..0..0..0
..1..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..1..1
..1..0..0..1. .1..0..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..0
|
|
CROSSREFS
|
Column 4 of A268766.
Sequence in context: A128523 A271298 A271118 * A068311 A109984 A247776
Adjacent sequences: A268759 A268760 A268761 * A268763 A268764 A268765
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Feb 13 2016
|
|
STATUS
|
approved
|
|
|
|