login
A268255
Number of length-(n+1) 0..2 arrays with new repeated values introduced in sequential order starting with zero.
1
7, 17, 42, 106, 273, 717, 1918, 5218, 14413, 40349, 114282, 326938, 943257, 2740797, 8010982, 23529346, 69385813, 205282157, 608959218, 1810358938, 5391414273, 16078923309, 48007516942, 143470822498, 429083952157, 1284051486077
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) - 15*a(n-2) + 7*a(n-3) + 6*a(n-4).
Conjectures from Colin Barker, Jan 11 2019: (Start)
G.f.: x*(7 - 32*x + 28*x^2 + 18*x^3) / ((1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)).
a(n) = 2^n + 3^n/2 + (3/4-1/sqrt(2))*(1-sqrt(2))^n + (3/4+1/sqrt(2))*(1+sqrt(2))^n.
(End)
EXAMPLE
Some solutions for n=8:
..0....1....1....0....0....1....0....0....2....1....0....1....2....0....0....1
..0....0....0....0....0....0....0....2....0....2....1....2....1....1....0....0
..2....0....0....2....0....1....1....0....0....0....2....1....2....0....1....2
..0....1....0....0....2....0....0....0....0....0....1....2....1....0....0....0
..1....1....1....1....0....2....0....0....1....2....2....0....0....2....0....2
..0....1....2....1....2....0....1....1....1....1....1....0....1....1....1....1
..1....1....1....0....0....0....0....0....1....0....2....1....0....0....1....0
..0....1....2....1....2....2....2....0....2....1....0....0....0....1....1....0
..2....1....0....0....1....1....1....1....2....0....0....2....1....1....1....1
CROSSREFS
Column 2 of A268261.
Sequence in context: A184862 A194772 A193546 * A124965 A253973 A200080
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 29 2016
STATUS
approved