login
A268174
Integers m such that m^(m+1) == 1 (modulo (m+2)).
1
1, 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 71, 77, 81, 87, 95, 99, 101, 105, 107, 111, 125, 129, 135, 137, 147, 149, 155, 161, 165, 171, 177, 179, 189, 191, 195, 197, 209, 221, 225, 227, 231, 237, 239, 249, 255, 261, 267, 269, 275, 279, 281, 291, 305, 309, 311, 315, 329, 335, 339, 345
OFFSET
1,2
COMMENTS
Integers m such that A110146(m)=1.
Note that in many cases these terms are also in A040976 (primes minus 2).
First terms that are not in A040976 are: 339, 559, 643, 1103, 1385, 1727, 1903, 2045, 2463, 2699, 2819. What is the pattern of these numbers?
LINKS
MATHEMATICA
Select[Range[400], PowerMod[#, #+1, #+2]==1&] (* Harvey P. Dale, Mar 18 2016 *)
CROSSREFS
Cf. A110146, A040976 (prime(n) - 2).
Sequence in context: A160771 A249426 A040976 * A166104 A164121 A333171
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 28 2016
STATUS
approved