login
a(n) = g_n(4), where g is the weak Goodstein function defined in A266202.
10

%I #13 Jan 11 2020 15:57:47

%S 4,8,9,10,11,11,11,11,11,11,11,10,9,8,7,6,5,4,3,2,1,0

%N a(n) = g_n(4), where g is the weak Goodstein function defined in A266202.

%C For more info see A266201 - A266202.

%e g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;

%e g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;

%e g_3(4) = b_4(2*4+1)-1 = 2*5 + 1-1 = 10;

%e g_4(4) = b_5(2*5)-1= 2*6 - 1 = 11;

%e g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;

%e g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;

%e g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;

%e g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;

%e g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;

%e g_10(4) = b_11(11)-1 = 12-1 = 11;

%e g_11(4) = b_12(11)-1 = 11-1 = 10;

%e g_12(4) = b_13(10)-1 = 10-1 = 9;

%e g_13(4) = b_14(9)-1 = 9-1 = 8;

%e …

%e g_21(4) = 0;

%t g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 4], {n, 0, 21}] (* _Michael De Vlieger_, Mar 18 2016 *)

%o (PARI) a(n) = {if (n == 0, return (4)); wn = 4; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; }

%o vector(22, n, n--; a(n)) \\ _Michel Marcus_, Apr 03 2016

%Y Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A267648: g_5(n); A266203: a(n) = k such that g_k(n)=0;

%Y A056193: G_n(4).

%K nonn,full,fini,easy

%O 0,1

%A _Natan Arie Consigli_, Mar 17 2016