login
A267432
Numbers of the form x^2 + xy + y^2 (A003136) that are not of the form a^2 + b^2 + c^2 where x, y, a, b and c are integers.
1
7, 28, 31, 39, 63, 79, 103, 111, 112, 124, 127, 151, 156, 175, 183, 199, 223, 247, 252, 271, 279, 316, 327, 343, 351, 367, 399, 412, 439, 444, 448, 463, 471, 487, 496, 508, 511, 543, 559, 567, 604, 607, 624, 631, 679, 687, 700, 703, 711, 727, 732, 751, 775, 796, 823, 831, 847, 871
OFFSET
1,1
COMMENTS
Intersection of A003136 and A004215.
Motivation for this sequence is the equation x^2 + x*y + y^2 = a^2 + b^2 + c^2 where x, y, a, b and c are integers.
Löschian numbers of the form a^2 + b^2 + c^2, where a, b and c are integers, are 0, 1, 3, 4, 9, 12, 13, 16, 19, 21, 25, 27, 36, 37, 43, 48, 49, 52, 57, 61, 64, ...
LINKS
EXAMPLE
7 is a term because it is a Löschian number and there is no integer values of a, b and c for the equation 7 = a^2 + b^2 + c^2.
Löschian number 19 is not a term because 19 = 5^2 + 5*(-2) + (-2)^2 = 1^2 + 3^2 + 3^2.
MATHEMATICA
Select[Range@ 900, And[Resolve[Exists[{x, y}, Reduce[# == x^2 + x y + y^2, {x, y}, Integers]]], !Resolve[Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers]]]] &] (* Michael De Vlieger, Jan 15 2016, after Jean-François Alcover at A003136 *)
PROG
(PARI) isA004215(n) = {my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } {for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
isA003136(n) = #bnfisintnorm(bnfinit(z^2+z+1), n);
for(n=0, 1e3, if(isA004215(n) && isA003136(n), print1(n, ", ")));
CROSSREFS
Sequence in context: A299468 A200974 A184331 * A155712 A015817 A103253
KEYWORD
nonn
AUTHOR
Altug Alkan, Jan 15 2016
STATUS
approved