login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266248 Decimal representation of the middle column of the "Rule 9" elementary cellular automaton starting with a single ON (black) cell. 3
1, 2, 5, 10, 21, 43, 86, 173, 346, 693, 1386, 2773, 5546, 11093, 22186, 44373, 88746, 177493, 354986, 709973, 1419946, 2839893, 5679786, 11359573, 22719146, 45438293, 90876586, 181753173, 363506346, 727012693, 1454025386, 2908050773, 5816101546, 11632203093 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

LINKS

Robert Price, Table of n, a(n) for n = 0..999

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

Index entries for sequences related to cellular automata

Index to Elementary Cellular Automata

FORMULA

Conjectures from Colin Barker, Dec 28 2015 and Apr 14 2019: (Start)

a(n) = (65*2^n-8*((-1)^n+3))/48 for n>3.

a(n) = 2*a(n-1)+a(n-2)-2*a(n-3) for n>2.

G.f.: (1+x^5-x^6) / ((1-x)*(1+x)*(1-2*x)).

(End)

MATHEMATICA

rule=9; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k], 2], {k, 1, rows}]  (* Binary Representation of Middle Column *)

CROSSREFS

Cf. A266243.

Sequence in context: A279668 A245747 A032283 * A027437 A267444 A267880

Adjacent sequences:  A266245 A266246 A266247 * A266249 A266250 A266251

KEYWORD

nonn,easy

AUTHOR

Robert Price, Dec 25 2015

EXTENSIONS

Conjectures from Colin Barker, Apr 14 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 15:20 EDT 2019. Contains 323571 sequences. (Running on oeis4.)