login
Number of perfect cube parts in all partitions of n.
3

%I #17 Nov 14 2020 06:25:49

%S 0,1,2,4,7,12,19,30,46,68,99,142,200,279,384,523,707,946,1256,1656,

%T 2169,2822,3652,4699,6017,7666,9725,12282,15452,19362,24176,30080,

%U 37307,46117,56843,69854,85613,104640,127578,155150,188249,227872,275242,331738,399027,478988

%N Number of perfect cube parts in all partitions of n.

%C a(n) = Sum_{k=0..n} k*A264391(n,k).

%H Alois P. Heinz, <a href="/A264392/b264392.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: ( Sum_{i>0} x^(h(i))/(1-x^(h(i))) ) / ( Product_{i>0} 1-x^i ), where h(i) = i^3.

%e a(4) = 7 because the partitions of 4 are [4],[3,1'],[2,2],[2,1',1'], and [1',1',1',1'], where the perfect cube parts are marked.

%p h := proc (i) options operator, arrow: i^3 end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1 .. 100))/(product(1-x^i, i = 1 .. 100)): hser := series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0 .. 50);

%t cnt[P_List] := Count[P, p_ /; IntegerQ[p^(1/3)]];

%t a[n_] := a[n] = cnt /@ IntegerPartitions[n] // Total;

%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}];

%t (* or: *)

%t m = 50;

%t CoefficientList[Sum[x^(i^3)/(1 - x^(i^3)), {i, 1, m^(1/3) // Ceiling}]/ Product[1 - x^i, {i, 1, m}] + O[x]^m, x] (* _Jean-François Alcover_, Nov 14 2020 *)

%Y Cf. A264391.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Nov 13 2015