login
Denominator of binomial(n-1, 2)/(6*n), for n >= 1. Denominator of Dedekind sum s(1,n).
6

%I #13 Mar 13 2018 05:09:09

%S 1,1,18,8,5,18,14,16,27,5,22,72,13,14,90,32,17,27,38,40,63,22,46,144,

%T 25,13,162,56,29,90,62,64,99,17,70,216,37,38,234,80,41,63,86,88,135,

%U 46,94,288,49,25,306,104,53,162,110,112,171,29,118,360,61,62,378

%N Denominator of binomial(n-1, 2)/(6*n), for n >= 1. Denominator of Dedekind sum s(1,n).

%C See A264388 for the numerators and details about the Dedekind sum s(1,n), as well as references.

%F a(n) = denominator(binomial(n-1, 2)/(6*n)), n >= 1.

%F a(n) = denominator(s(1,n)), with s(1,n) = Sum_{r=1..(n-1)} (r/n)*(r/n - floor(r/n)- 1/2), n >= 1, where s(h,k) are the Dedekind sums.

%t Denominator[Table[Binomial[n-1,2]/(6n),{n,50}]] (* _Harvey P. Dale_, Aug 30 2016 *)

%o (Julia)

%o using Nemo

%o A264389(n) = denominator(dedekind_sum(1, n))

%o [A264389(n) for n in 1:70] |> println # _Peter Luschny_, Mar 13 2018

%Y Cf. A264388.

%K nonn,easy,frac

%O 1,3

%A _Wolfdieter Lang_, Jan 11 2016