login
A263799
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing
7
2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 7, 3, 4, 4, 4, 7, 7, 4, 4, 5, 4, 14, 7, 14, 4, 5, 5, 5, 14, 17, 17, 14, 5, 5, 6, 5, 25, 18, 61, 18, 25, 5, 6, 6, 6, 25, 56, 130, 130, 56, 25, 6, 6, 7, 6, 41, 66, 494, 616, 494, 66, 41, 6, 7, 7, 7, 41, 218, 1435, 4991, 4991, 1435, 218, 41, 7, 7, 8, 7, 63, 272
OFFSET
1,1
COMMENTS
Table starts
.2.2..3...3.....4.......4........5.........5.........6..........6.........7
.2.2..3...3.....4.......4........5.........5.........6..........6.........7
.3.3..7...7....14......14.......25........25........41.........41........63
.3.3..7...7....17......18.......56........66.......218........272.......798
.4.4.14..17....61.....130......494......1435......4917......13962.....41366
.4.4.14..18...130.....616.....4991.....30130....185795....1022105...5241463
.5.5.25..56...494....4991....62904....760671...8468941...90476206.850301770
.5.5.25..66..1435...30130...760671..20141827.445862545.9910247963
.6.6.41.218..4917..185795..8468941.445862545
.6.6.41.272.13962.1022105.90476206
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) -a(n-3)
k=2: a(n) = a(n-1) +a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7)
k=4: [order 19]
k=5: [order 37]
k=6: [order 83]
EXAMPLE
Some solutions for n=5 k=4
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..0..0..1..1..0....1..1..1..1..0....0..0..0..0..0....1..1..0..0..0
..0..0..1..1..0....1..1..1..1..0....0..0..0..0..0....1..1..0..0..0
CROSSREFS
Column 1 is A005578(n+1).
Sequence in context: A104307 A264029 A263873 * A299230 A182576 A368869
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 26 2015
STATUS
approved