login
T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and every three consecutive elements having its maximum within 4 of its minimum.
8

%I #4 Oct 24 2015 06:48:21

%S 1,1,2,1,2,3,1,2,6,5,1,2,6,14,8,1,2,6,24,31,13,1,2,6,24,78,56,21,1,2,

%T 6,24,120,110,104,34,1,2,6,24,120,168,169,208,55,1,2,6,24,120,288,204,

%U 301,418,89,1,2,6,24,120,288,276,348,616,873,144,1,2,6,24,120,288,456,374

%N T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and every three consecutive elements having its maximum within 4 of its minimum.

%C Table starts

%C ...1....1.....1.....1.....1.....1.....1.....1.....1.....1.....1.....1.....1

%C ...2....2.....2.....2.....2.....2.....2.....2.....2.....2.....2.....2.....2

%C ...3....6.....6.....6.....6.....6.....6.....6.....6.....6.....6.....6.....6

%C ...5...14....24....24....24....24....24....24....24....24....24....24....24

%C ...8...31....78...120...120...120...120...120...120...120...120...120...120

%C ..13...56...110...168...288...288...288...288...288...288...288...288...288

%C ..21..104...169...204...276...456...456...456...456...456...456...456...456

%C ..34..208...301...348...374...488...768...768...768...768...768...768...768

%C ..55..418...616...696...732...754..1002..1508..1508..1508..1508..1508..1508

%C ..89..873..1373..1601..1673..1699..1759..2393..3434..3434..3434..3434..3434

%C .144.1772..2908..3476..3692..3744..3766..3906..5238..7560..7560..7560..7560

%C .233.3545..5908..7244..7784..7940..7984..7999..8312.11107.16024.16024.16024

%C .377.7103.11544.14048.15360.15748.15880.15908.15930.16548.21922.31872.31872

%H R. H. Hardin, <a href="/A263703/b263703.txt">Table of n, a(n) for n = 1..653</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-2)

%F k=2: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19)

%F k=3: [same order 19] for n>27

%F k=4: [same order 19] for n>27

%F k=5: [same order 19] for n>29

%F k=6: [same order 19] for n>31

%F k=7: [same order 19] for n>33

%e Some solutions for n=7 k=4

%e ..1....1....4....0....0....3....1....0....4....0....0....0....2....1....1....0

%e ..3....0....2....3....1....1....0....1....0....1....2....3....0....0....4....1

%e ..0....2....0....1....4....0....2....2....1....4....1....1....4....4....0....3

%e ..4....4....1....5....5....4....4....3....2....3....5....2....1....2....2....2

%e ..2....6....3....2....3....2....3....6....5....6....4....5....3....5....3....6

%e ..5....5....5....6....2....6....6....4....6....2....3....6....5....6....5....4

%e ..6....3....6....4....6....5....5....5....3....5....6....4....6....3....6....5

%Y Column 1 is A000045(n+1).

%K nonn,tabl

%O 1,3

%A _R. H. Hardin_, Oct 24 2015