login
A263245
Decimal representation of the n-th iteration of the "Rule 155" elementary cellular automaton starting with a single ON (black) cell.
2
1, 5, 19, 95, 319, 1535, 5119, 24575, 81919, 393215, 1310719, 6291455, 20971519, 100663295, 335544319, 1610612735, 5368709119, 25769803775, 85899345919, 412316860415, 1374389534719, 6597069766655, 21990232555519, 105553116266495, 351843720888319
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 20 2016 and Apr 17 2019: (Start)
a(n) = a(n-1)+16*a(n-2)-16*a(n-3) for n>3.
G.f.: (1+4*x-2*x^2+12*x^3) / ((1-x)*(1-4*x)*(1+4*x)).
(End)
Empirical a(n) = (11*4^n-(-4)^n-8)/8 for n>0. - Colin Barker, Nov 25 2016 and Apr 17 2019
Conjecture: a(n) = 3*4^((n-1)/2)*2^n - 1 for odd n; a(n) = 5*4^(n/2 - 1)*2^n - 1 for even n > 0. - Karl V. Keller, Jr., May 01 2022
MATHEMATICA
rule=155; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A149808 A371836 A149809 * A346199 A020050 A106958
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved